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Using the combination of affinity enrichment and high-resolution LC-MS/MS analysis, we performed a large-
scale lysine malonylation analysis in the model representative of Gram-positive plant growth-promoting
rhizobacteria (PGPR), Bacillus amyloliquefaciens FZB42. Altogether, 809 malonyllysine sites in 382 proteins
were identified. The bioinformatic analysis revealed that lysine malonylation occurs on the proteins involved
in a variety of biological functions including central carbon metabolism, fatty acid biosynthesis and metabolism,
NAD(P) binding and translation machinery. A group of proteins known to be implicated in rhizobacterium-plant
interaction were also malonylated; especially, the enzymes responsible for antibiotic production including poly-
ketide synthases (PKSs) and nonribosomal peptide synthases (NRPSs) were highly malonylated. Furthermore,
our analysis showedmalonylation occurred on proteins structure with higher surface accessibility and appeared
to be conserved in many bacteria but not in archaea. The results provide us valuable insights into the potential
roles of lysine malonylation in governing bacterial metabolism and cellular processes.
Biological significance: Although in mammalian cells some important findings have been discovered that protein
malonylation is related to basicmetabolism and chronic disease, few studies havebeenperformedonprokaryotic
malonylome. In this study, we determined themalonylation profiles of Bacillus amyloliquefaciens FZB42, a model
organism of Gram-positive plant growth-promoting rhizobacteria. FZB42 is known for the extensive investiga-
tions on its strong ability of producing antimicrobial polyketides and its potent activities of stimulating plant
growth. Our analysis shows that malonylation is highly related to the polyketide synthases and the proteins in-
volved bacterial interactions with plants. The results not only provide one of the first malonylomes for exploring
the biochemical nature of bacterial proteins, but also shed light on the better understanding of bacterial antibiotic
biosynthesis and plant-microbe interaction.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Rhizobacteria are a group of heterogenic bacteria living in the vicin-
ity of plant roots. Most rhizobacteria are beneficial to plants via a series
of knownmechanisms. For example, rhizobacteria can i) provide nutri-
ent substrates to plants by mineralization of soil minerals and complex
organic compounds, ii) induce plant systemic resistance to stress envi-
ronments, and iii) promote plant growth by secreting phytohormones
like indole-3-acetic acid (IAA) or gibberellic acid [1]. Also importantly,
.lylo@163.com (Y.-L. Li),
b.com (X.-J. Peng),
(X.-Q. Wu),
many rhizobacteria protect host plants from soil-borne phytopathogens
by synthesizing a variety of antibiotics [2], or by forming robust biofilms,
a physical barrier on plant roots against pathogens. Many competent
rhizobacterial strains have been used to develop biofertilizer or biocon-
trol agents.

Two important groups of rhizobacterial antibiotics are nonribosomally
synthesized polyketides and lipopeptides, which are produced from
the precursors derived from primary metabolism [2,3]. Biosynthesis
of these antibiotics is rather energy costing and controlled by a dy-
namic complex regulatory network [4]. Thus, to unveil the regulato-
ry mechanism and to promote biosynthesis of these antimicrobial
metabolites is a promising direction for the formulation of better mi-
crobial fertilizers or even clinic agents.

The regulation of bacterial gene expression can be controlled at sev-
eral levels including post-translationalmodifications (PTM), e.g. protein
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phosphorylation and ubiquitination. In recent years other PTM types
such as acetylation, methylation, succinylation, crotonylation, and
malonylation have been increasingly identified, benefiting from the
progress of high-resolution mass spectrometry and improved purifica-
tion methods [5–9]. PTM is ubiquitous in diverse organisms and
known to play important roles in many cellular processes [10]. For ex-
ample, lysine acetylation has been relatedwith enzyme activity, protein
localization and their interactionwith other proteins or nucleic acids [7,
11]. Acetylation is not only prevalent in the enzymes for the primary
metabolisms like glycolysis and citrate cycle [12,13], but also involved
in secondary metabolism [14].

Although mostly carried out in eukaryotic cells, the studies of PTM
have also been performed in many prokaryotes. For example, protein
acetylation has been investigated in Gram-negative bacteria like
Escherichia coli [15–20], Salmonella enterica [21–23], Erwinia amylovora
[24], and Thermus thermophiles [25], and Gram-positive bacteria such
as Bacillus subtilis [26], Geobacillus kaustophilus [27], Streptomyces
roseosporus [14] and B. amyloliquefaciens subsp. amyloliquefaciens
DSM7 [28]. The succinylomes have been characterized in E. coli [29,
30], B. subtilis [31,32], and Mycobacterium tuberculosis [33]. In recent
years,malonylation is also drawing increasing attention [34–36]. For in-
stance, the research on mammalian malonylome has highlighted the
importance of lysine malonylation in type 2 diabetes and glycolysis
[35,36]; the largest malonylome dataset so far revealed that lysine
malonylation could contribute to pathophysiology of malonic aciduria
and be associated with genetic disease [37]. However, until now only
two prokaryotic malonylome has recently been characterized [38,39].

The strain B. amyloliquefaciens FZB42 is a representative of Gram-
positive beneficial rhizobacteria, which has been extensively studied,
particularly in its antagonism mechanisms against plant pathogens
[2]. FZB42 is a potent antibiotic producer, able to synthesize ten antibi-
otic compounds including several non-ribosomally synthesized
lipopeptides and three polyketides: bacillaene, difficidin, and
macrolactin. These antibiotic compounds have been established to be
efficient in control of fire blight disease, pathogenic nematodes, pollut-
ing algae, and bacterial leaf streak of rice [40–43]. The biosynthesis
pathways of the polyketides have been elucidated previously [2,44–47].

It's conventionally known that lysine acetyltransferase (KAT) cata-
lyzes the transfer of the acetyl group from acetyl-CoA to a lysine.
Malonyl-CoA has been proposed to be the donor of malonylation [34].
Given that malonyl-CoA is indispensable for the polyketide biosynthe-
sis, wewere curious to knowwhether proteinmalonylation is occurring
in FZB42 and whether it is linked with the biosynthesis of these
polyketides. In this study, we exploited immunoaffinity enrichment
strategies and mass spectrometry-based technologies to determine
the malonylation profiles of B. amyloliquefaciens FZB42.

2. Material and methods

1. Bacterial strains and growth conditions

For assessment of the overall malonylation degree, B.
amyloliquefaciens FZB42 was grown in chemically defined M9 medium
(2 mM MgSO4, 0.1 mM CaCl2, 0.4% glucose,), routine Luria Broth (1%
peptone, 0.5% yeast extract, 0.5% NaCl) and SE medium (1% peptone,
0.05% yeast extract, 0.5% NaCl, 10% soil extract) [48,49]. The cultures
were incubated at 210 rpm and 37 °C. Optical density of the cultures
was monitored at 600 nm. For protein preparation from biofilm,
FZB42 was grown in static liquid Luria Broth at 30 °C and after 36 h
the pellicle was picked out.

2. Western blotting

The extracted proteins were adjusted to be at the concentration of
2 mg/ml and then boiled in SDS loading buffer for 10 min. Then they
were subjected to 12% SDS-PAGE and transferred to a polyvinylidene
difluoride (PVDF) membrane. The membrane was blocked overnight
at 37 °C for 2 h in TBS buffer (25 mM Tris-HCl, pH 8.0, 150 mM NaCl)
containing 5% bovine serum albumin (BSA) and incubated with either
the anti-succinyl lysine antibody (PTM Biolabs Inc., Hangzhou, China)
(1:1000, in TBS/2.5% BSA) or the anti-malonyl lysine antibody (PTM
Biolabs Inc., Hangzhou, China) (1:5000, in TBS/2.5% BSA) overnight at
4 °C. After washing three times with TBST buffer (25 mM Tris-HCl,
pH 8.0, 150 mM NaCl, 0.1% Tween20), the membrane was incubated
with horseradish peroxidase-conjugated goat anti-rabbit antibody
(1:5000 dilutions) for 1 h at 37 °C. The membrane was then washed
with TBST buffer and visualized with chemiluminescent HPR substrate
(Immobilon™ Western, Millipore, USA). Finally, the blot was imaged
with X-rayfilm (XBT, Carestream, Xiamen, China) at adequate exposure
time.

3. Protein extraction

Three bacterial cultures of equal amount were pooled and then cen-
trifuged for pellets before being grounded with liquid nitrogen. The cell
powder was transferred to 5 ml centrifuge tube and sonicated three
times on ice using a high intensity ultrasonic processor (Scientz, Ningbo,
China) in lysis buffer (8M urea, 10mMdithiothreitol, 2mMEDTA, 3 μM
Trichostatin A, 50 mM Nicotinamide and 1% Protease Inhibitor Cocktail
III). The remaining debris was removed by centrifugation at 20,000 g at
4 °C for 10 min. Finally, the protein was precipitated with cold 15% tri-
chloroacetic acid for 2 h at −20 °C. After centrifugation at 4 °C for
10 min, the supernatant was discarded. The remaining precipitate was
washed with cold acetone for three times. The protein was redissolved
in buffer (8 M urea, 100 mM NH4CO3, pH 8.0) and the protein concen-
tration was determined with 2-D Quant kit (GE Healthcare, USA) ac-
cording to the manufacturer's instructions.

4. Trypsin digestion

For digestion, the protein solution was reduced with 10 mM dithio-
threitol for 1 h at 37 °C and alkylated with 20 mM iodoacetamide for
45min at room temperature in darkness. For trypsin digestion, the pro-
tein sampleswere diluted by adding 100mMNH4CO3 till the concentra-
tion of urea in the samples was b2M. Finally, trypsin was added at 1:50
trypsin-to-proteinmass ratio for the first digestion overnight and 1:100
trypsin-to-proteinmass ratio for a second 4 h-digestion. A total of 15mg
proteins were used for trypsin digestions. 300 μg and 150 μg trypsin
were used for the first and the second step of digestion, respectively.

5. HPLC fractionation

The sample was fractionated by high pH reverse-phase HPLC using
Agilent 300 Extend C18 column (5 μm particles, 4.6 mm ID, 250 mm
length; Agilent Technologies, USA). Briefly, peptides were first separat-
ed with a gradient of 2% to 60% acetonitrile in 10mMammoniumbicar-
bonate pH 10 over 80 min into 80 fractions, Then, the peptides were
combined into 8 fractions and dried by vacuum centrifuging.

6. Affinity enrichment

To enrich the peptides containing lysine malonylation (Kmal), tryp-
tic peptides dissolved in NETN buffer (100 mM NaCl, 1 mM EDTA,
50 mM Tris-HCl, 0.5% NP-40, pH 8.0) were incubated with pre-washed
antibody beads (PTM-901, PTM Biolabs) at 4 °C overnight with gentle
shaking. PTM-901 is specially designed for detecting malonyllysine
[39,43]. The beads were washed four times with NETN buffer and
twice with ddH2O. The bound peptides were eluted from the beads
with 0.1% trifluoroacetic acid. The eluted fractions were combined and
vacuum-dried. The resulting peptides were cleaned with C18 ZipTips
(Merck Millipore, Germany) according to the manufacturer's instruc-
tions, followed by LC-MS/MS analysis.
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7. LC-MS/MS analysis

Three parallel analyses for each fraction were performed. Peptides
were dissolved in 0.1% formic acid, directly loaded onto a reversed-
phase pre-column (Acclaim PepMap 100, Thermo Fisher Scientific,
USA). Peptide separationwas performed using a reversed-phase analyt-
ical column (Acclaim PepMap RSLC; Thermo Fisher Scientific, USA). The
gradient was comprised of an increase from 6% to 22% solvent B (0.1%
formic acid in 98% acetonitrile) for 24 min, 22% to 35% for 8 min and
climbing to 80% in 5 min then holding at 80% for the last 3 min, all at a
constant flow rate of 300 nl/min on an EASY-nLC 1000 UPLC system
(Thermo Fisher Scientific), the resulting peptides were analyzed by Q
Exactive™ Plus hybrid quadrupole-Orbitrap mass spectrometer (Ther-
mo Fisher Scientific, USA).

The peptides were subjected to NSI source followed by tandem
mass spectrometry (MS/MS) in Q Exactive™ Plus (Thermo) coupled
online to the UPLC (EASY-nLC 1000, Thermo Fisher Scientific, USA).
Intact peptides were detected in the Orbitrap at a resolution of
70,000. The mass window for precursor ion selection was setting as
2 m/z. The charge state 2–5 was selected for MS/MS screening. Pep-
tides were selected for MS/MS using NCE (normalized collision ener-
gy) setting as 30; ion fragments were detected in the Orbitrap at a
resolution of 17,500. A data-dependent procedure that alternated
between one MS scan followed by 20 MS/MS scans was applied for
the top 20 precursor ions above a threshold ion count of 1.0E4 in
the MS survey scan with 15.0 s dynamic exclusion. The electrospray
voltage applied was 2.0 kV. Automatic gain control (AGC) was used
to prevent overfilling of the Orbitrap; 5E4 ions were accumulated
for generation of MS/MS spectra. For MS scans, the m/z scan range
was 350 to 1800.

8. Database search

The resulting MS/MS data was processed using MaxQuant [50] with
integrated Andromeda search engine (v.1.4.2). Tandem mass spectra
were searched against 3728 Bacillus amyloliquefaciens coding sequences
(NCBI Reference Sequence Database, Date: 2015.7.30, Version:
NC_009725.1) concatenated with reverse decoy database. Trypsin/P
was specified as cleavage enzyme allowing up to 4 missed cleavages, 5
modifications per peptide and 5 charges. Mass error was set to
10 ppm for precursor ions and 0.02 Da for fragment ions. Carbamido-
methylation on Cys was specified as fixed modification and oxidation
on Met, malonylation on Lys and acetylation on protein N-terminal
were specified as variable modifications. False discovery rate (FDR)
thresholds for peptide modification site, peptide and protein were con-
trolled at 1%. Minimum peptide length was set at 7. The other parame-
ters inMaxQuantwere set to default values (Digestionmode: trypsin/P;
Max missed cleavages: 4; First search PPM: 20; Main search PPM: 5;
Max number of modifications per peptide: 5; Max charge: 5; Min pep-
tide length: 7; Min razor & unique peptide: 1; Min score for modified
peptides: 40; Peptides for quantification: Unique & razor peptides).
The site localization probability was set as N0.75. We used WoLF
PSORT [51], a subcellular localization predication software, to predict
subcellular localization.

9. Analysis of enriched sequence pattern with malonylation

The software motif-x [52,53] was used to analyze the model of se-
quences constituted with amino acids in specific positions of modifier-
21-mers in all identified malonylated protein sequences. Peptide se-
quences which were cut out 10 amino acids upstream of and down-
stream of an identified malonylation site from the identified protein
sequences were used as foreground sequence for motif analysis. And
all the database protein sequences were used as background. The
other analysis parameters were set as follows: Modified acid amino
“central character”was set as ‘K’ (lysine); foregroundpeptides sequence
length “width” was set at 21; minimal number of peptide occurring in
one motif “occurrences” was set at 20; motif analysis statistics test sig-
nificance threshold value was set at 0.0000001.
10. Functional enrichment analysis

For each protein, three biological annotation information including
gene ontology, pathway, and functional domainwas retrieved. Gene on-
tology was annotated by UniProt-GOA (http://www.ebi.ac.uk.GOA).
InterProScan was further used for new gene ontology assignment if
there is no available information in UniprotGOA. The pathway informa-
tionwas collected fromKEGGpathwaydatabase. The functional domain
of each protein was annotated by InterProScan. The one-tailed Fisher's
exact test was used to test the enrichment of the identified protein an-
notation against all annotation subjects. The annotation with a p-value
b0.05 is considered significant.
11. Analysis of the distribution ofmalonylation sites in secondary structures
and surface accessibility

Secondary structure analysis was performed using NetSurfP [54].
Only predictionswith aminimumprobability of 0.5 for one of the differ-
ent secondary structures (coil, α-helix, β-strand) were considered for
analysis. The mean secondary structure probabilities of the modified
lysine residues were compared with the mean secondary structure
probabilities of a control dataset containing all the lysine residues of
all the malonylated proteins identified in this study. The p-values
were calculated with the Wilcoxon test.
12. Malonyllysine sites conservation analysis

To determine the degree of evolutionary conservation of
malonylation, a BLASTP analysis was used to comparemalonylated pro-
tein sequences of Bacillus amyloliquefaciens against the protein se-
quences of 59 species from UniProtKB (http://www.uniprot.org/).
Using the reciprocal best LAST hit approach, we determined the
orthologous proteins among these genomes. For each orthologous
group, MUSCLE (v3.8.31) was used to performmultiple sequence align-
ment. The conservation of malonylated lysine for each species was cal-
culated by counting the total number of conserved malonylated lysine
and the total number of conserved non-malonylated lysine. Lysine
was considered to be conserved if the aligned locus is a lysine residue
in both B. amyloliquefaciens and other multiple species. All lysine resi-
dues of the proteins identified in this study were considered as control.
p-values were calculated using Fisher's exact test.
13. Protein-protein interaction analysis

All identified malonylated protein name identifiers were
searched against the STRING database (version 10.0) for protein-
protein interactions. Only interactions between the proteins belong-
ing to the searched data set were selected, thereby excluding exter-
nal candidates. STRING defines a metric called “confidence score”
to define interaction confidence; we fetched all interactions that
had a confidence score ≥ 0.7 (high confidence). Interaction network
from STRING was visualized with Cytoscape. The network was ana-
lyzed for densely connected regions with molecular complex detec-
tion (MCODE), a graph theoretic clustering algorithm. 11 MCODE
clusters were found. In order to further explore biological process
of these MCODE clusters, GO category enrichment analysis was per-
formed with each MCODE cluster. Three significance (p b 0.05) GO
category related MCODE clusters were found.

http://www.ebi.ac.uk.GOA
http://www.uniprot.org
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3. Results and discussion

1. General features of the malonylome in B. amyloliquefaciens FZB42

Since there is no reference about the occurrence and the extent of
protein malonylation in Bacillus, we firstly performed a pilot experi-
ment: aWestern blot analysis with B. amyloliquefaciens FZB42 proteins
using anti-malonyllysine antibodies was conducted. The proteins pre-
pared from six samples were compared with the difference in media
(minimalmedium:M9mediumand richmedium: LBmedium), growth
stages (exponential phase, transition phase, and stationary phase), or
cell status (vegetative growth and biofilm). As a result, multiple protein
bands spanning a wide mass range across the samples revealed the
presence of diverse malonylated proteins. The highest degree of
malonylation, indicated by abundant bands, was registered after 8 h
growth in the liquid SE medium supplemented with soil extract (Sup-
plementary Fig. S1). This medium has been used previously [49], in
order to provide an environment more close to natural soil. However,
the degree of malonylation seemed to be more related to growth
stage rather than to medium ingredients, because at the vegetative
growth stage (OD600 = 1.0) a similar band abundance happened in
both LB medium and SE medium, whereas in the same SE medium
there were obviously higher malonylation degree at the 8th hour than
at the earlier and the later time points (Supplementary Fig. S1). We
thus selected the sample from the 8th hour for nextmalonylome profil-
ing, although the relative high malonylation degree at this time point
may need to be confirmed further.

The peptides enriched with malonyllysine antibodies were profiled
with 2D-LC-MS/MS and the obtained spectra were used to search the
B. amyloliquefaciens databases [2]. For quality control, the mass error
of all identified peptides and their peptide length distribution were
checked. The distribution of mass error was near zero and most of
themwere b5 ppm, suggesting a good accuracy of ourMS data (Supple-
mentary Fig. S2a). The length of most peptides was distributed between
7 and 30 amino acids and agreed with the property of tryptic peptides
(Supplementary Fig. S2b). A total of 382 proteins were found to be
malonylated on 809 unique lysine sites (see Table 1 in [55]), corre-
sponding to ~2.1 sites per protein. Possibly due to our specific extraction
method, themajority of malonylated proteins (~90%) was cytoplasmic;
the remainingwere either extracellular or membrane proteins (Supple-
mentary Fig. S2c). Using the spectra of the peptides enriched, we also
searched the database for other PTM types structurally similar to lysine
malonylation, like acetylation, succinylation, and propionylation.
Compared with 887 (4.82%) of the peptides identified to contain
malonylation, 9 (0.05%), 28 (0.16%), and 6 (0.03%) of peptide were
found to have acetylation, succinylation, and propionylation, respec-
tively (see Table 2 in [55]). This result indicates a good specificity and
sensitivity of the malonyllysine antibodies.

The identifiedmalonylated proteins accounted for ~10% (382/3698)
of the proteome of B. amyloliquefaciens FZB42. This number is less than
that of the acetylated proteins recently identified in B. amyloliquefaciens
subsp. amyloliquefaciens DSM7 [28], but was more than the number of
succinylated proteins detected in B. subtilis [17,19,32]. Among the 382
malonylated proteins, 54% contained a single lysine malonylation
(Kmal) site; 22% contained two Kmal sites; and 9% contained three
sites (Supplementary Fig. S2d). The polyketide synthases, BaeR, BaeN,
BmyA, and BaeM possessed N10 Kmal sites. Bacillaene synthetase R
(BaeR) was the most heavily malonylated protein carrying 17 Kmal
sites.

To identify specific sequence patterns present in the target se-
quences of malonylation, we compared the position-specific amino
acid frequencies of sequences surrounding the malonylated lysine
with those of all lysine residues occurring in the B. amyloliquefaciens
FZB42 proteome. We thus defined six significantly enriched Kmal site
sequences for 327 unique sites, accounting for 40% of Kmal sites identi-
fied (Supplementary Fig. S3). For five of these significant patterns,
positively charged arginine or lysine residues were enriched in close vi-
cinity to the malonyllysine sites, resembling the accumulation of posi-
tively charged amino acids in the acetylation sites of S. roseosporus
[14]. The over-presented patterns identified here imply that amino
acid residues with positive charge may be functionally important for
malonylation.
2. Lysine malonylation involved a wide range of functions in B.
amyloliquefaciens

Using a classification system adapted from B. subtilis [56], we
classified the 382 malonylated proteins into several functional groups
(Fig. 1a). Except that nearly 10% of proteins were with unknown func-
tion, lysine malonylation was detected on proteins involved in a wide
spectrum of biological functions. The details of functional categories of
proteins are summarized in Table 3 in [55].

Accounting for ~38% of the detected malonylome, 145 proteins are
involved in intermediary metabolism. Among them, the largest portion
of the proteins were the enzymes involved in central carbon metabo-
lisms such as Embden–Meyerhof–Parnas (EMP) pathway, pentose
phosphate pathway (PPP) and the tricarboxylic acid cycle (TCA) (see
Table 3 in [55]). Nearly all of the enzymes involved in the EMP pathway
were malonylated including those critical for limiting reaction rate: 6-
phosphofructokinase (PfkA), phosphoglycerate kinase (Pgk) and pyru-
vate kinase (Pyk). Twenty proteins related to the metabolism of lipids
were also malonylated containing a total of 45 Kmal sites (see Table 3
in [55]). These proteins were involved in either fatty acid elongation
or fatty acid β-oxidation. The two proteins involved in fatty acid β-oxi-
dation, FadN and FadE, possess 10 and 8 Kmal sites, respectively. Since
the above carbonhydrates aremainly related to energy biosynthesis, to-
gether with the fact that another set of 16 proteins (see Table 3 in [55])
associated with electron transport chain and ATP synthesis were also
malonylated, this leads us to infer that malonylation may be important
in governing energy generation of bacteria.

The proteins involved in information pathway represented the sec-
ond largest group comprising around 22% (85 proteins) of all the
malonylated proteins. Themembers of this group are devoted to the ge-
netic information flowing process from DNA to proteins. Nearly 60% of
the proteins (49 proteins) were related to protein synthesis: they are
14 aminoacyl-tRNA synthetases, four elongation factors (FusA, TufA,
Tsf, and Efp), three initiation proteins (Fmt, InfB, and InfC), one ribo-
some recycling factor (Frr), as well as 27 ribosomal proteins. Notably,
on the elongation factor FusA there were 10 Kmal sites. In addition,
four proteins (GroEL, GroES, DnaK, and Tig) involved in protein folding
and three involved in protein modification were also malonylated. This
result suggests a potential role of lysinemalonylation in controlling pro-
tein synthesis. The second largest subgroup of the information pathway
proteins are those involved in RNA synthesis. Nineteen proteins are the
members of this subgroup, including RNA polymerase (RpoA, RpoB,
RpoC, RpoD, and RpoE) and a series of transcriptional regulators such
as AbrB, Spo0A, and CodY.

To explore the possible functional roles shared by the
malonylated sites, we performed enrichment analysis based on the
Gene Ontology (GO) database. While instead of analyzing the
whole malonylated proteins, we examined the distribution of
malonylated peptides in various protein domains in order to gain a
finer insight into their functional enrichment. It reveals that Kmal
sites were significantly enriched in the domains such as the
phosphopantetheine-binding domain and the beta-ketoacyl syn-
thase domain of polyketide synthase, thiolase-like domain, nucleic
acid-binding OB fold, aldolase-type TIM barrel, and acyl carrier pro-
tein-like domain (Fig. 1b). This result agree with the distribution of
the malonylated proteins in various proteins, but pinpoints more
precisely the preferred location of malonyl groups on the proteins
and implies possible specialized functions of malonylation.
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In addition, KEGG enrichment analysis was performed in order to
gain an insight into the connections among the malonylated pro-
teins. We observed that 13 KEGG pathways were highly enriched
(Fig. 1c and Supplementary Fig. S4), including glycolysis/gluconeo-
genesis, TCA cycle, pentose phosphate pathway, fatty acid metabo-
lism and biosynthesis, oxidative phosphorylation, RNA degradation
and methane metabolism. In general, the pathway enrichment result
indicates a possible role of lysine malonylation in many reactions es-
pecially in carbon metabolism.

Some of the enriched functional categories/pathways of the
malonylated proteins have also been observed in eukaryotes. For ex-
ample, the mammalian malonylomes exhibit a close relationship be-
tween lysine malonylation and glycolysis/gluconeogenesis, where
malonylation suppresses the enzymatic activity of GAPDH (glyceral-
dehyde-3-phosphate dehydrogenase) [36]. In addition, the enriched
pathways were also shared by the proteins with other PTM types:
the proteins involved in protein synthesis are abundantly acetylated
in S. roseosporus [14]; acetylation is well known to target many en-
zymes of central carbon metabolism in not only eukaryotes but also
various prokaryote species such as E. coli, Salmonella, and Thermus
thermophilus, B. subtilis, B. amylolyquefaciens, and S. roseosporus [14,
17,19,23,25,32,57,58]. The occurrence of succinylation in the cycle
and fatty acid metabolisms has also been reported [32,35]. However,
lysine malonylation seemed absent in those RNases (RNase R, RNase
E, and RNase J), which are targets of acetylation [14,59]. In general,
the different PTMs displayed some overlapping functional targets.
3. Polyketide synthases (PKS) and non-ribosomal peptide synthetases
(NRPS) were highly malonylated

Polyketides and nonribosomal peptides are two families of natu-
ral products biosynthesized in a similar manner by multi-modular
enzymes acting in assembly line arrays. The monomeric building
blocks are organic acids or amino acids, respectively [60]. B.
amyloliquefaciens FZB42 is an efficient producer of polyketides and
cyclic lipopeptides, including some (difficidin, macrolactin, and
bacillomycin D) which do not occur in non-plant-associated B.
amyloliquefaciens and B. subtilis strains [2,3]. Besides three
malonylated proteins involved a ribosomally synthesized peptide
plantazolicin, a total of 33 enzymes, accounting for nearly 8.6% of
the 382 malonylated proteins, were involved in the nonribosomal
synthesis of seven antibiotics: bacillaene, difficidin, macrolactin,
bacillomycin D, fengycin, surfactin, and an unknown peptide. The
33 enzymes contained 128 Kmal sites, corresponding to a mean of
3.8 sites per protein, which is significantly higher than the average
level of 2.1 Kmal sites per protein.

The bacillaene synthase in FZB42, encoded by a N70 kb gene clus-
ter [47], is a mega complex composed of 15 enzymes, some of which
possess multiple functional domains. The complex is characterized
by the presence of discrete acyltransferases acting in trans (BaeC,
D, E), hybrid NRPS/PKS enzymes BaeJ and BaeN [46,47], and polyke-
tide synthases BaeL, BaeM and BaeR [3,61]. BaeR, BaeN, and BaeM
were the most malonylated proteins detected in this study,
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containing 17, 15 and 11 Kmal sites, respectively (Fig. 2a, and see
Table 1 in [55]). Compared with other domains of the enzymes,
such as KR (ketoreductase) domain and TE (thioesterase) domain,
around one third of the Kmal sites on BaeR, BaeM, and BaeN were lo-
cated on the ACP and KS domains. This possibly suggests a preference
of malonylation on ACP domains and KS domains.

This preference seems also true to BmyA, the second highest
malonylated protein with 16 Kmal sites. BmyA is a member of the
gene cluster responsible for bacillomycin D synthesis. The gene cluster
consists of four open reading frame (ORF): the first ORF encodes a
putative malonyl coenzyme A transacylase, BmyD, which participates
in fatty acid synthesis; the other ORFs encode the hybrid PKS/NRPS
enzyme, BmyA, and the NRPS enzymes BmyB and BmyC [44,62].
While BmyD and BmyC each contained one Kmal site and BmyB
contained no Kmal site, all the 16 Kmal sites of BmyA (3982 AA) were
concentrated within the part homologous to fatty acid synthetase
(Fig. 2b, and see Table 1 in [55]). Three acyl carrier proteins (ACP)
domains possessed six Kmal site, and the β-ketoacyl synthetase (KS)
domain possessed two Kmal sites. Besides, there were two Kmal sites
on the AL domain, highly similar to long chain fatty acid-CoA ligase,
and another four sites on the AMT domain, homologous to glutamate-
1-semialdehyde aminotransferase.

The ACP domains are known to be associated with binding of
phosphopantetheine, which is pivotal for the PKSs serving as a “flex-
ible arm” to deliver a substrate from one active site of the enzyme
complex to the next one [63]. The KS domains have an SH group on
a cysteine side-chain and catalyze Claisen condensation by handing
over the nascent polyketide chain from the ACP domain of the previ-
ous module to the KS domain of the current module [63]. This is an
irreversible key step, forming carbon to carbon bond, in fatty acid
and polyketide synthesis [64]. The malonylation on ACP domains
indicates their possible important role in regulating reaction rate of
polyketide synthesis.

Malonyl-CoA was previously assumed as the donor of malonyl
group for lysine malonylation, which has led to the first identifica-
tion of malonylome in eukaryotes and the further investigations
[34,65]. Malonyl-CoA is known to play a key role in chain elongation
in fatty acid and polyketide biosynthesis in bacteria. In FZB42, for ex-
ample, the macrolactin skeleton is synthesized by extension of an
acetyl starter unit by successive Claisen condensations with
Malonyl-CoA [45]. This knowledge implied a possibility that the di-
verse PKSs/NRPSs in FZB42 could be malonylated. Such reasoning
initiated this study and was confirmed by the results reported here.
Although the roles of these Kmal sites still remain elusive, their
relative high occurrence in the enzymes suggests the potential
importance of malonylation in the non-ribosomal synthesis of
polyketides and hybrid lipopeptides. In future, a deeper understand-
ing of the mechanism of malonylation regulation, for example, iden-
tification of the enzymes responsible for lysine malonylation and
demalonylation in bacteria, may help to utilize the bacteria as an ef-
ficient factory for antibiotic production [34–36].

4. Lysine malonylation of proteins related to microbe-plant interactions

Themolecularmechanism of interactionwith host plants has been a
research focus of rhizobacteria for a long time. As a representative of
PGPR strains, the FZB42 genes implicated in the interaction with plants
have been carefully explored in our previous studies [2,41,48,66,67].
Here we found that some proteins involved in these interactions were
malonylated. A vital group of these proteins included those involved
in antibiosis, which has been discussed above. Antagonistic activity
against phytopathogens of the antibiotics such as polyketides and
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nonribosomally synthesized lipopeptides is a major mechanism of bio-
control activities of beneficial rhizobacteria. In addition, forming
biofilms on plant roots is another barrier against attacks of phytopatho-
gens.We found that YmcA, an importantmaster regulator of biofilm for-
mation [68,69], and LuxS, required in biofilm formation [70,71], were
also malonylated.

Notably, a set of proteins, which previously found induced by maize
root exudates [48],weremalonylated (see Table 4 in [55]). This set of in-
duced genes includes, besides the genes involved in antibiotic synthesis
and central carbon metabolism, some other genes. For example, the iol
A-J gene products are responsible for utilizing of inositol, which is abun-
dant in soil in the form of hexaphosphate (phytate). Inositol can be de-
graded by soil bacteria as nutrient source. Six proteins (IolA, IolB, IolC,
IolG, IolH, IolI) encoded by the iol operon as well as the regulator IolS
were malonylated at 14 lysine sites. Furthermore, 1) the enzyme GlvA,
whose gene is the highest induced by root exudates and responsible
formaltose utilization; 2) the enzyme LuxS, implicated in quorum sens-
ing [70,71], an important signaling process related to biofilm formation;
3) the enzymes BdhA (YdjL), AcoA, and AcoC, involved in synthesis of
acetoin and 2.3 butanediol, the volatiles known to stimulate plant
growth and systemic resistance of plants [72–75]; and 4) the detoxify-
ing enzymes removing free oxygen radicals in cells, like superoxide
dismutase (SodA) and thioredoxin (TrxA), which are crucial for
rhizobacterial adaptation in rhizosphere [1,2], were also malonylated.
A set of themalonylated proteins involved in plant-microbe interactions
were summarized in Fig. 3.

The above malonylated proteins are important for rhizobacterial
adaption to plant environment or for their beneficial activities to
plants. Thus, we presumed that lysine malonylation may also be im-
portant to microbe-plant interactions. To provide evidence for this,
the locations of malonyllysines in some of the proteins were further
analyzed. The possible effect of malonylation on their structures or
activities was found for several proteins. For example, malonylated
K97 of myo-inositol dehydrogenase IolG is corresponding to the
same site of inositol dehydrogenase from B. subtilis (BsIDH)
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Fig. 3.Malonylated proteins reported being involved in plant-microbe interaction. Themalonyl
site. The proteins shown are 6-phospho-alpha-glucosidase (GlvA), acetoin dehydrogenase E1 co
dehydrogenase BdhA (YdjL), D-chiro-inositol transport protein (IolF), 2-keto-myo-inositol dehy
glucuronate isomerase (IolB), 2-deoxy-5-keto-D-gluconic acid kinase (IolC), methylmalona
autoinducer-2 production protein (LuxS), superoxide dismutase (SodA), and thioredoxin (TrxA
(Fig. 4a). K97 is part of the highly conserved C95EKP motif and one
member of the important catalytic triad (Lys97, Asp172, and
His176) involved in the catalytic activity of BsIDH [76]. K97 may be
responsible for proper orientation of the nicotinamide ring and the
substrates or involved in a proton relay [76]. Another example is
LuxS carrying the malonylated K124 and K130, which are compara-
ble to K124 and K130, respectively, in B. subtilis (Fig. 4b). K124 and
K130 of B. subtilis are in the active site of LuxS with the presence of
a Zn2+ atom. The chain from 118 to 132, including the important res-
idue Cys126, underpins the Zinc-binding site of LuxS [77]. The
malonylation of K124 and K130, near to Cys-126, may affect the co-
ordination of the metal. Further, as the third example, the
malonylated K54 of TrxA was also found near the active site (seg-
ments 24–34 and 57–73), according to the protein structure of B.
subtilis (Fig. 4c) [78].

We also analyzed the protein TufA, which was induced by root
exudates and bears three Kmal sites (K239, K266, and K316), for
the significance of malonylation. The elongation factor TufA is
known to recognize and transport non-initiator aminoacyl-tRNA to
the A site of ribosomes in the elongation cycle. The Lys237 (corre-
sponding to K239 in FZB42) in E. coli was shown to be cross-linked
to a 3′-oxidized tRNA in a complex with GTP [79]. The Lys263 of E. coli
(K266 in FZB42) has a very reduced reactivity but its environment is
highly altered upon the conformational change in EF-Tu, which takes
place during nucleotide exchange [80–82]. Further, Lys263 and its
neighboring Phe261, Arg262 surround the binding sites of several anti-
biotics artificially designed to act against Clostridium difficile infection
(Fig. 4d) [83–85]. This information further supported the potential bio-
logical significance of malonylation identified.

5. Functional relationships between proteins with malonylation and other
PTMs

Using the PTM information from the model organism B. subtilis,
we found that 71.2% of the malonylated proteins were also post-
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Fig. 4. Structures of a set of proteins with identified malonyllysine(s). Three-dimensional structures of the proteins with a malonylated lysine residue(s) indicated by red arrows or a red
circlewere shown. (a) Homo-4-mer B. subtilis myo-inositol dehydrogenase IolG bears themalonylated K97 locating at a catalyzing site; (b) Homo-2-mer B. subtilis s-ribosylhomocysteine
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translationally modified by other chemical groups (acetylation,
succinylation or phosphorylation) (see Table 5 in [55]). This raises
a possibility of functional cross-talks between the different types of
PTMs. To comprehend the relation profile between the modified
proteins, a protein-protein interaction network was established for
the differently modified proteins (Fig. 5). In the network the connec-
tions between these proteins form some clusters, suggesting closer
interactions within each of them. The clusters included several func-
tional categories of proteins significantly enriched as follows: fatty
acid biosynthesis, central carbon metabolism, polyketide synthases
(beta-ketoacyl synthetase domain) and ribosome related proteins.
These clusters illustrate the functional relatedness of the modified
proteins.

The proteins carrying three overlapping modifications
(malonylation, acetylation, and succinylation) were mainly distrib-
uted into the functional categories of translation machinery and cen-
tral carbon metabolism. The surfactin synthetase SrfAB is the most
heavily modified protein containing a total of 35 modification sites
of all the four PTM types. The complicated interaction network
among the proteins and some of them with strong modifications by
different PTMs suggest a complex effect of their modifications and
possibly concerted actions in some cellular processes.
6. Malonylation occurs with higher surface accessibility

In order to find a possible relationship between the Kmal sites and
protein secondary structures, we performed a structural analysis of all
identified malonylated proteins. The mean probability of Kmal sites lo-
cated at a certain type of secondary structures (α-helixes, β-strands, or
coils) was comparedwith that of all lysine sites located at the structure.
The result suggests that Kmal sites does not prefer certain secondary
structures (Fig. 6a), consistentwithwhatwas observed for protein acet-
ylation [17,86], although some argue that lysine acetylation preferred
coil rather than α-helixes and β-strands [14,25,28]

The structural analysis also allows us to assess surface accessibil-
ity of these malonylation sites. It is shown that the average surface
accessibility of the malonyllysines was significantly higher
(p b 0.001) than that of all lysines (Fig. 6b). This indicates that the
Kmal sites are preferably located on the surface of proteins and prob-
ably occur after maturation of the proteins. We suspect that the pre-
ferred distribution of Kmal sites on protein surfaces may be an
advantage to the biosynthesis of fatty acids and polyketides. In the
process of production of these molecules, the association of elongat-
ing fatty acid chains or polyketide chains with their synthases may
increase the hydrophobicity of the mega complex, thus interfering
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with their normal assembly in an aqueous environment. A possible
mechanism of balancing this hydrophobicity is to enhance protein
surface accessibility, for example, with the presence of lysine
malonylation.

7. Malonyllysine sites are conserved in many bacteria but not in archaea

The degree of malonylation conservation could be a good indica-
tor of the extent of how malonylation affects proteins. To define
this, we examined the evolutionary conservation of malonylated
and non-malonylated lysines in diverse species. In total, we select-
ed 59 species covering five important groups in the three domains
of life. These species include the representatives of Bacilli, which
are the low GC% Gram-positive bacteria and the relatives of FZB42;
the representatives of actinobacteria, which are one of the domi-
nant bacterial phyla and also Gram-positive but with high GC%;
the representatives of proteobacteria, which is a major group of
Gram-negative bacteria; the representatives of different archaea,
and several eukaryotes which are most commonly used as model
organisms such as Caenorhabditis elegans, Drosophila melanogaster,
Mus musculus, Homo sapiens, and Arabidopsis thaliana (Fig. 7). For
each group, the species representing the major subgroups were
selected.

The result revealed that in some species of the Bacillus group, the
Actinobacteria group and the proteobacteria group the malonylated
lysines were significantly more conserved than the non-malonylated
lysines (Fig. 7). This is also the case in some eukaryotes, e.g. Homo
sapiens and Drosophila. Using the existing malonylomes [36–39,43],
we could sum up 89 conserved Kmal sites that are present in other
bacteria (E. coli and Saccharopolyspora erythraea), human, or mouse
(see Table 6 in [55]). The higher degree of conservation in
malonylated lysines indicates a stronger selective pressure to
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maintain the malonylated lysines. This may be due to conserved
functional roles of Kmal in cells, although we would not exclude
the alternative possibility; e. g. the protein regions where Kmal
sites occur may be more structurally conserved.

By contrast, in all chosen species of archaea there was no statis-
tical difference in the conservation of malonylated and non-
malonylated lysines (Fig. 7). The absence of conserved sites in ar-
chaea may reflect their phylogenetic distance and physiological dif-
ference from bacteria. For example, a number of malonylated
proteins are involved in lipid metabolism; however, it is well
known that archaeal lipids lack fatty acids. This difference may par-
tially account for the reason why Kmal sites were conserved in bac-
teria but not in archaea species. However, the finding needs be
interpreted with enough prudence due to still limited observation.
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4. Conclusion

Our data showed that lysine malonylation occurs on a number of
B. amyloliquefaciens subsp. plantarum FZB42 proteins and targets a
wide range of biological functions. Those conserved functions like
central carbon metabolism, fatty acid metabolism, and protein
synthesis as well as those related to biocontrol activities and plant
bacteria-interactions, a remarkable feature of this species, suggests
the possibility that malonylation may play an important role in
governing such processes. In general, our results provide a starting
point for further elucidating the functions of malonylation in regu-
lating the physiology of rhizobacteria, the model organism B. subtilis,
and many other prokaryotes. On the other hand, since we restricted
our detection of malonylation peptides to one condition, it is very
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likely that manymalonylation sites remain unidentified. A systemat-
ic screening of the full map of malonylation sites is still necessary in
future. Other important questions, e.g., what are the enzymes
responsible for malonylation/demalonylation and the interactions
betweenmalonylationwith other PTMs, also await further investiga-
tions. These explorations will contribute to gradually decipher the
largely unknown part of the malonylation world.
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